skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Perez, Karen I"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The Galactic Center (GC), with its high density of massive stars, is a promising target for radio transient searches. In particular, the discovery and timing of a pulsar orbiting the central supermassive black hole (SMBH) of our galaxy will enable stringent strong-field tests of gravity and accurate measurements of SMBH properties. We performed multiepoch 4–8 GHz observations of the inner ≈15 pc of our galaxy using the Robert C. Byrd Green Bank Telescope in 2019 August–September. Our investigations constitute the most sensitive 4–8 GHz GC pulsar survey conducted to date, reaching down to a 6.1 GHz pseudo-luminosity threshold of ≈1 mJy kpc2for a pulse duty cycle of 2.5%. We searched our data in the Fourier domain for periodic signals incorporating a constant or linearly changing line-of-sight pulsar acceleration. We report the successful detection of the GC magnetar PSR J1745−2900 in our data. Our pulsar searches yielded a nondetection of novel periodic astrophysical emissions above a 6σdetection threshold in harmonic-summed power spectra. We reconcile our nondetection of GC pulsars with inadequate sensitivity to a likely GC pulsar population dominated by millisecond pulsars. Alternatively, close encounters with compact objects in the dense GC environment may scatter pulsars away from the GC. The dense central interstellar medium may also favorably produce magnetars over pulsars. 
    more » « less
  2. Caballero identified the star 2MASS 19281982-2640123 as a potential Sun-like star from which the WOW! signal could have originated. We conducted a search for artificial narrowband (2.79 Hz/1.91 Hz), drifting (±4 Hz s^−1) technosignatures from this source using the turboSETI pipeline, from 1–2 GHz, using simultaneous multi-telescope observations with both the Robert C. Byrd Green Bank Telescope and the newly refurbished Allen Telescope Array on 2022 May 21. Both telescope observations had an overlap of 580 s. While blind searches using radio telescopes have been conducted in the general field of view in which the WOW! signal was first detected, this is the first time a targeted search has been done. No technosignature candidates were detected. 
    more » « less
  3. The search for extraterrestrial intelligence at radio frequencies has largely been focused on continuous-wave narrowband signals. We demonstrate that broadband pulsed beacons are energetically efficient compared to narrowband beacons over longer operational timescales. Here, we report the first extensive survey searching for such broadband pulsed beacons toward 1883 stars as a part of the Breakthrough Listen’s search for advanced intelligent life. We conducted 233 hr of deep observations across 4–8 GHz using the Robert C. Byrd Green Bank Telescope and searched for three different classes of signals with artificial (or negative) dispersion. We report a detailed search—leveraging a convolutional neural network classifier on high-performance GPUs—deployed for the very first time in a large-scale search for signals from extraterrestrial intelligence. Due to the absence of any signal-of-interest from our survey, we place a constraint on the existence of broadband pulsed beacons in our solar neighborhood: ≲1 in 1000 stars have transmitter power densities ≳10^5 W Hz^−1 repeating ≤500 s at these frequencies. 
    more » « less
  4. Abstract The aim of the search for extraterrestrial intelligence (SETI) is to find technologically capable life beyond Earth through their technosignatures. On 2019 April 29, the Breakthrough Listen SETI project observed Proxima Centauri with the Parkes ‘Murriyang’ radio telescope. These data contained a narrowband signal with characteristics broadly consistent with a technosignature near 982 MHz (‘blc1’). Here we present a procedure for the analysis of potential technosignatures, in the context of the ubiquity of human-generated radio interference, which we apply to blc1. Using this procedure, we find that blc1 is not an extraterrestrial technosignature, but rather an electronically drifting intermodulation product of local, time-varying interferers aligned with the observing cadence. We find dozens of instances of radio interference with similar morphologies to blc1 at frequencies harmonically related to common clock oscillators. These complex intermodulation products highlight the necessity for detailed follow-up of any signal of interest using a procedure such as the one outlined in this work. 
    more » « less
  5. Abstract The detection of life beyond Earth is an ongoing scientific pursuit, with profound implications. One approach, known as the search for extraterrestrial intelligence (SETI), seeks to find engineered signals (‘technosignatures’) that indicate the existence of technologically capable life beyond Earth. Here, we report on the detection of a narrowband signal of interest at ~982 MHz, recorded during observations towards Proxima Centauri with the Parkes Murriyang radio telescope. This signal, BLC1, has characteristics broadly consistent with hypothesized technosignatures and is one of the most compelling candidates to date. Analysis of BLC1—which we ultimately attribute to being an unusual but locally generated form of interference—is provided in a companion paper. Nevertheless, our observations of Proxima Centauri are a particularly sensitive search for radio technosignatures towards a stellar target. 
    more » « less
  6. A line of sight toward the Galactic Center (GC) offers the largest number of potentially habitable systems of any direction in the sky. The Breakthrough Listen program is undertaking the most sensitive and deepest targeted SETI surveys toward the GC. Here, we outline our observing strategies with Robert C. Byrd Green Bank Telescope (GBT) and Parkes telescope to conduct 600 hr of deep observations across 0.7–93 GHz. We report preliminary results from our survey for extraterrestrial intelligence (ETI) beacons across 1–8 GHz with 7.0 and 11.2 hr of observations with Parkes and GBT, respectively. With our narrowband drifting signal search, we were able to place meaningful constraints on ETI transmitters across 1–4 GHz and 3.9–8 GHz with EIRP limits of ≥4 × 10^18 W among 60 million stars and ≥5 × 10^17 W among half a million stars, respectively. For the first time, we were able to constrain the existence of artificially dispersed transient signals across 3.9–8 GHz with EIRP ≥1 × 10^14 W/Hz with a repetition period ≤4.3 hr. We also searched our 11.2 hr of deep observations of the GC and its surrounding region for Fast Radio Burst–like magnetars with the DM up to 5000 pc cm^−3 with maximum pulse widths up to 90 ms at 6 GHz. We detected several hundred transient bursts from SGR J1745−2900, but did not detect any new transient bursts with the peak luminosity limit across our observed band of ≥10^31 erg s^−1 and burst rate of ≥0.23 burst hr^−1. These limits are comparable to bright transient emission seen from other Galactic radio-loud magnetars, constraining their presence at the GC. 
    more » « less